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ABSTRACT

The present paper deals with an algorithm for quadratic programming

when the matrix of the quadratic part of the maximand is semi-definite. When

m is the number of linear inequality constraints the algorithm leads to a

simplex tableau of order m X 2m.

In Section 1 an algorithm is given which is valid when the matrix of

the quadratic part is strictly definite. It was originally proposed in [ 1],

but is restated here in a self-contained way. Section 2 deals with'iinear

programming, which is considered as a quadratic programming problem with

a zero matrix for the quadratic part of the maximand. It is an introduction

to Section 3, dealing with singular quadratic programming.

The algorithm solves explicitly for the dual problem as well.



AN ALGORITHM FOR SINGULAR QUADRATIC PROGRAMMING

J. C. G. Boot

1. Quadratic Programming

The problem is to maximize the function

n n n
(1. 1) Q (~x)" =a'x- Tx'Bx [ Z aix -- 1 1, bijxix ]

i=l i=l j =1

where B is a symmetric, positive definite matrix, subject to

n
(1.2) C x < d M c ChiXi d d h =1,..., m

i=l

or, equivalently,

(1.3) C'x+lw=d, w- 0.

The m -vector d will be called the source-vector; the m -vector w

will be called the slack-vector. Either the slack is zero, and the

corresponding source is fully used; or else the slack is positive, and

Sponsored by the Mathematics Research Center, U. S. Army, Madison,
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the corresponding source is amply available. Non-negativity conditions may

be included in (1.2) or (1.3) . The first n inequalities of (1. 2) are

then - Ix :- 0 ; the first n elements of the slack-vector are then exactly

the elements of x.

In Theorems 1 and 2 we will derive the Kuhn-Tucker conditions.

Consider:
1

(1.4) Q(x, u) =a'x- -x'Bx- u'[C'x+Iw- d]
2

where the m -vector u will be called the Lagrangean vector. Then:

Theorem 1: A sufficient condition for x to solve the problem

(1.1) - (1.2) is:

i) Ctx < d [or, equivalently, C'x +Iw = d; w > 0]

iid - =0 [i.e. a-Bx -Cu =0]

iii) u > 0

iv) u'1w* =0.

Proof: Suppose x is a vector such that C'x -d (or

C'x +Iw =d, w-0 ). Then:
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* - 1* * 1 --
(1.5) Q(x)- Q()= a'(x ')-x'Bx +x

22

a'l(x X) + -( x 'B(x -x )x 'Bx +x 'Bx

=(a'- x 'B)(x - x) + ( x* )'B(7- x

u ' - 1+ T1(- x* '(- x*

=U Id- w- C'x) + "x 1- x*)I'Blx - x*
* *( 1-- * -*

=u g(d-Cx) + (x -(x )'B(x-x)

•*- 1- *)( x*

=u 'w+ T(x-x )B(X-x )> 0,

since u 0 0, w a- 0, and B is positive definite. The equality only holds

if x=x

Theorem 2: A necessary condition for x to solve (1. 11 - (1. 2)

is

i) Cox* 1 d [or, equivalently, C'x* +Iw* =d, w >0 ]

)x* =0 [i.e. a-x* - Cu =0]

iii) u -0

iv) u 'w = 0.
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Proof: i) is obvious. ii) is the well-known Lagrangean

condition for maximizing under constraints. As for iii), consider

(1.6) dQdd=u,

which implies that, if u has a negative element, a decrease in its

associated source d (or, equivalently, an increase in the associated

slack w) will increase the value of Q = Q . There is nothing in the

nature of the relevant inequality of (1. 2) preventing this decrease.

Hence, no element of u can be negative' . To prove iv), suppose

uh > 0. Then, vide (1.6) , an increase in dh, which is feasible

as long as wh> 0, increases Q. Hence, if uh> O, wh> O,

there is no maximum. Conversely, suppose wk is positive. Then,

if uk> O, since

dQ
(1.7) d u

a decrease in wk increases Q. Hence, no maximum.

The two theorems lead to the following approach. From

(1.8) a - Bx - Cu =0

1 Actually, this argument glosses over a subtle point. For it requires the

vector u to be defined! Using (1. 10) below we see that

u = (CwB 1Cwl'Ild - C' B 1a)

where C' is the submatrix of C' consisting of all rows with slack zero.
w

If the rows of CI are dependent, u cannot be uniquely solved. In somew

cases, this can indeed lead to difficulties.
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and

(1.9 C'x+Iw=d

we derive

(1.10) - CB' Cu + Iw = d - C'B' a

by solving (1. 8) for x and substituting the result in (1. 9) . The problem

is to find a non-negative solution (u , w ) to this system of m equations

in 2m unknowns such that u* w* = 0. As initial solution we can clearly

take? w =d- C t B 1a. If w > 0, then we have the solution. If not, we

replace a negative wi by ui (which u1 will then be positive, see below).

Thus, we invariably fulfill the requirement u'w = 0.

If, at any stage, a wt is negative, this implies that the i t h constraint
1

is violated. In the next step, if we impose w 0 , we maximize a'x - I x'Bx

subject to the same constraints as before plus the i t h constraint. This vl1

decrease the value of Q

If, however, at any stage u1 is negative (hence w, = 0), then the

i t h constrained is imposed (clx = di). In the next step, putting ui = 0,

we maximize ax - I x'Bx subject to the same constraints as befc:e, minus

th*
the i constraint. This will increase the value of Q

2 If there are n non-negativity conditions the first n elements of w are the

values of x. These values are

x =0- (-I) B'la =B Ia,

the vector of the unconstrained maximum.
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Variables imposed to be zero are called non-basic variables. The

other variables are called basic variables. In the initial solution the ui

(i = 1, ... , m) are non-basic, the wi  (i = 1, ... , m) are basic.

Throughout all stages of the solution process, if ui is basic, then wi

is non-basic and vice versa.

Theorem 3: Consider a solution (u, w) to (2. 10) satisfying

uw = 0. Then, if u= 0, w < 0 a switch making ui basic and wi

non-basic will lead to ui > 0. Conversely, if u i < 0, wi =0, a

switch making ui non-basic will lead to wI > 0.

Proof: If ui <0, wi = 0 the switch will increase the value of

Q, because we are maximizing subject to one constraint less. Since

dQ u<(1.11) d = u <0

increasing Q* implies decreasing di, or increasing wi (from 0 to some

positive value). Again, if wi < 0, ui = 0, a switch will decrease the value

of Q , because we are maximizing subject to one constraint more. Now

dQ =-u
( dwi  i

An increase in wi (from a negative value to 0) decreases Q, hence
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increases the value of ui (from 0 to some positive value) 3

The question which wi or uk' if negative, to replace is of

progmatic interest. The most natural approach appears to be to replace

the most negative value. An alternative procedure is to consider all

quotients wi/u i  (all w lWI < 0) and Uk/Wk (all uk uk < 0) and

switch the variables with the largest ratio. Neither of these procedures

is foolproof against cycling, but for practical pu rposes this is of no

consequence. For theoretical purposes, switching procedures can be

(and have been) constructed which exclude cycling altogether, cf. [1]

An Example

Maximize 3x + 4x -3x2 - 4x x2x -. x
1 2 1 1 2 2 2

Subject to -x I  < 0

-x 2 < 0

x + Zx? < 4

3 A little algebra shows that specifically if u i < 0, wi = 0, then the switch

leads to a value of wi equal to - -u 1 , where p is the (h, h)t h diagonalI P -
element of the inverse of the positive definite matrix C'B Cww if c is the

h th row of Cw , cf. footnote 1. Conversely, if w < 0 , u I = 0 the value
w I thI

of uI after the switch is -a wi , where a is the (k, k) diagonal element

of the inverse of CwB C w, if the newly included c is the k t h row of C'w w iW
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Hence, ro d
a= 3 B- 6 4 ,t= -

414 3 2 -1 0
1 2 4

B "  1- - CIB' C 11 -2 d- a= -3-

12 II2 12
L- -2 3 -4 6

1 -4 1-4-

Hence, consider:

Basic Value u U 2  u3  wI w2 w3

1 1 1 2wI -3- -1. 2 2 lo

w 2  6 2 -3 4 0 1 0

1 1 1w -4- - 21 4 -5- 0 0 1
2 2

Switch w3 and u , since w3 is the most negative.

W -1 -4 2 0 1 0 -11 -l-I -I T TT1

8 2 1 0 1 8
2 1 TT "T 0I 0

3 5 8 2U3 -1 i-I -I-i 1 0 0T-
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Switch w I and u

Basic Value u 1  u2  u3  w 1  w2 w 3

1 4111 0511- o - "

w 2 0 0 0112 'Y 11 3

u -1 0 5 -3u3  4...

Switch u 3 and w3

1 4 5 2
u1  2- 1 0 0

1 1 2 4w2  1- 0 -3 T

1 2 4 5 0
3 3 3 3 3

This is the solution. Knowing the vector w we can easily solve

Ctx + w = d; in fact, when there are non-negativity conditions the first n
1

elements of w coincide with those of x; hence x 1 = 0, x2 = 11- . We

would have gotten the final tableau directly by switching w1 and u I in
1 w3 1

the first tableau ( - > - ) . We also have u I = 2 7 , u2 =0, u3 =0.
1 3 3 23

These values of the Lagrangeans are an indication of the value of

the sources, by virtue of (1. 6). Moreover, they are the solution to the
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so-called dual problem. Formally, if the primal problem is given by
* *

(1.1) - (1.2), and has a solution x , say, then the m-vector u

solves the problem

(1.13) Minimize d'u + 1x* x

2

subject to

(1.14) u > 0

and

(1.15) Cu+Bx =a

Moreover:

1* * * 1* *

(1.16) atx - -x Bx =d'uS + Ix Bx .
2 2

Relations (1.14) - (1.16) can be verified numerically.

The example is illustrated in Figure 1.
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2. Linear Programming

The easy procedure outlined above breaks down when B is semi-

definite. For then CtBI C and CIB Ia cannot be determined. Consider

first the most extreme case, where the B -matrix is the null-matrix, and

hence we have a linear programming problem. We can then apply the

procedure above by introducing a large value X and considering the

problem:

1(2. 1) Maximize X(atx) - xIx

subject to

(2.2) C'x<d

which is clearly equivalent to the linear programming problem of maximizing

atx subject to C'x<d.

As an illustration consider the problem:

Maximize L(x) =3x + ux 2  [or p(kx) =X(3Xl+4X2)-LxIx ]

Subject to -x - 0

-x 2 0

x 1 - 2x 2< 1

Zx1 - 3x2 !- 2

x I + 4x 2 IS 3
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We obtain, since B =B = :

C'B 1C =CIC= 1 0 -1 -2 -1 and d-CB-a =d-Cla= 0+ 3k

0 1 2 3 -4 0+ 4k

-1 2 5 8 -7 1 + 5k

-2 3 8 13 -10 2+ 5k

-1 -4 -7 -10 -17 3 - 19k

which leads to the following tableaux:

I

Basic Value u1  u2  u3  u4  u 5  w1  w2  w3  w4  w5

w 0 + 3k -1 0 1 2 1 1 0 0 0 0

w2  0 + 4k 0 -1 - z -3 4 0 1 0 0 0

w 1 + 5k 1 -2 -5 -8 7 0 0 1 0 0

w4  2+ 6k 2 -3 -8 -13 10 0 0 0 1 0

w 5  3 - 19k 1 4 7 10 -17 0 0 0 0 1

II (Switch w 5 and u ; divide all entries by 17)

w1 3 + 32k -16 4 24 44 0 17 0 0 0 1

w2  12 - 8K 4 -1 -6 11 0 0 17 0 0 4

w 38 - 48. 24 -6 -36 -66 0 0 0 17 0 7

w4  64 - 88k 44 -11 -66 -121 0 0 0 0 17 10

u5 -3 + 19k -1 -4 -7 -10 17 0 0 0 0 -1
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III (Switch w4 and u4 )

Basic Value uL. u2  u3  u4  u5  w1 w w3 w4  w5

17w, T-OX 0

wz 4 + 0O.

64

- -1")'

;59 173 1- + OX- 0
64 8

The solution therefore is: = x1 =.7 w2 = x2  w
11 ' =-1' w3 11

67
w4 =w 5 = 0, = -j . The solution is illustrated in Figure 2. The first

tableau gives as solution ( 3X, 4X), i. e. a point on the gradient line to

3x1 + 4x, , the linear part of the objective function. Since this point violates
th 1

the 5 t h constraint, we next maximize 3Xx 1 + 4Xx Z - I x'Ix subject to

1
x + 4x f=3. Because maximizing 3Xx 1 + 4Xx - Ix'Ix is the same as

minimizing i (x I - 3X, x - 4k)I x I - 3k] , we actually minimize the

distance between (3X, 4X) and the line x I + 4x2 = 3; i.e. we findthe

projection of (3X, 4X) on x I + 4x 2 =3. In the next tableau we find the
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solution. Either criterion tells us to switch u 4 with w4 .

It is of some Interest to notice that it will take at least n steps to

get to the solution point, since at least n elements of w will be zero in

the solution - barring infinite maxima. It may also be observed that the

solution of the dual is given by the coefficients of ). in the final tableau,

8 17i.e. u1 =0, u2 =0, u 3 =, u 4 - 11 u5 = ri . This follows, because

dq(kx)/dx = Xu.
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I (3X, 4X)

4

3

171

Figure 2 x 2 128-)S
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3. Singular Quadratic Programming

We are now in a position to consider the more general case of

quadratic programming with a singular quadratic part. Quite generally,

if B is a positive semi-definite matrix of order n X n and rank r there exists

an n X r matrix T' suchthat T'T = B. Introducing the transformation

3.1 = =T*x

[where yl Is a r-vector, YZ a (n-r) -vector and E a matrix which

has as k t h row the (r + k)t h n-dimensional unit vector] we can therefore

write, provided we iake care that the first r columns of T are independent;

1 1
(3.2) a'x - - xBx = a'T y 2 Y1IYn

*-1 1
Maximizing a'T y - - y' I y, is equivalent to maximizing

*l 1 1yIy

X (a'T y-' Y1 Y'1) - 1y'2 IY2

provided X is very large.

As an example consider the problem
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1
Maximize 3x I + 4x2 + x 3 - (x x 2 x 3 ) 1 2 -1 x

2 4 -2 x

-1 -2 3

Subject to -x 0

-x 0

-x 3  0

x I + 2x 2 + x 3 =4

Using y= 1 2 -1 x or x= 1 -2 1 y

0 1 0 0 1 0

0 0 1 0 1

We reformulate this problem as follows.

1 2 1 2 12Maximize ) (3Y"2Y2 + 4Y3 " Yl) " 1 Y 2 -" Y 3

Subject to -Y l + 2Y2 - Y3 10

Y2 -1 0

- Y3 I 0

Yl + ZY3 < 4
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With C=- 1 2 -1 B= X 0 0 d- 0 a= 3

0 -1 0 0 1 0 0 -2X

0 0 -1 0 0 1 0 4X

1 0 2L 4

we obtain

.i- 1 5X + 1 2X +1"*

-C'B C=' - 2 -1 d-CIB a =3+8XX X

2 -1 0 0 -2

-1 0 -1 2 4X

2)4+1 4k +1I
0 2 4+ 1 -8X

Thus, we get the following tableaux:

I

Basis Value uI  u2  u3  u4  w1  w2  w

wI 3+),) -Il 0 0 0

w2  -ZX) 2 -l1 0 0 0 0 0 0

w4 - 0 - 2 0 0 0

w42 1 2-8 0 0 0 0 0 0
4,34 1 0 -
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II (With, for reasons of simplicity, u 2 replacing w 2 )

Basis Value u 1  U 2  U3  U4  w W2 w3  4

w3+4X~ - X+ 0 -1 X+ 1 2 0 0

U 2  2X. -2 1 0 0 0 -1 0 0

w3 4X. -1 0 -1 2 0 0 1 0

1-8X 2 + 0 2 4X+ 0 0 0 1

III (Switching u 4 and w 4 )

w 0k +4 1 01 01 2 2X+ I
I 4X +1I ~4X + 0 4X.+1 0 4X 2 0I)+

u2 2X4 -2 1 0 0 0 -1 1 0

N. 4+ 6X .1 0 -1 0 0 0 0 4)X+

3 4X8)TT 24+ 1 24X + )X.

4)4+ -1)2 4.+ 1 0 2X 1 0 0 0 X~

In thef irst tableau we have y2  W 2 =-2k ; y 3  w 3 4X, y1I 2y 2 -y 3 + w 1 = 3

This is clearly the solution maximizing 3y 1 - 2y2 + 4y3 - y1 2 However, we

violate the 2d and 4 thconstraint (as Indicated by the negative values for

w2 and w 4 ) First imposing w? = 0 and next N4 = 0 leads to the final



#353 -21-

tableau. We have w = loX+y and w4 =0
1 4Xw+102 - 3 -4X+1

Hence y 6X 1 4 +4 =1, and, as acheck,
H2 = 0 3 = 4X+l = ' Yl = 4 X +

Yl + 2y 3 = 4. Transforming back to the original variables we find x I = 2-Z

x2 =0, x3 = 1. , and the value of the objective function equals 8-.

Again, the coefficients of X give the dual values; hence uI =0, u 2 =2,

8). - 1= 0, 84 = -4X+ = 2. Checking (1. 15) we find:

-1 0 0 1 0 1 0 0 1 3

2 -0 0 0 : + 0 0 0 0 -

-1 0 -1 2 0 L0 0 0J oi0 L. 4

2

Writing I (Pk) for linear functions in X , and q( k ) for quadratic functions

of X , any problem with a finite solution will have forms of the structure

IM(X
- for all basic wi , and SI X.) for basic u . The expressions in

the tableaux themselves will invariably be of the form 13M

74(

Again, we can make the observation that, if there is a finite solution,

at least n - r steps will be required. For:

Theorem 4 . If the maximum of ax - i x'Bx, (where B is of order
2

n X n and rank r ), subject to C'x < d is finite, then at least n - r constraints
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will be exactly satisfied.

Proof: Rewrite so as to get

1

Maximize aIT*ly - yIy

Subject to CtT 'Iy <= d .

The r variables y1 take finite values. For any set of values, say

y1 .there remains a linear programming problem in n - r variables. Hence

at least n - r constraints will be binding.

If we can find n - r constraints binding in the solution point by

inspection, the problem can immediately be transformed to a non-singular
1

quadratic programming problem. For maximizing a'x - - x'Bx (B is of2

order nXn, rank r) subjectto Cx=d (where C' hasatleast n-r

rows ch ) is equivalent to maximizing

a'x - 1 '[B+ + ... c

subject to C'x =d. The matrix B+c lc I +.. +cn-rct'r will be of full

rank iff the matrix [Ci is of full rank.
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